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LETTER TO THE EDITOR 

Hamiltonian systems with a certain stability property 

F T Hioe 
Department of Physics, St John Fisher College, Rochester, N Y  14618, USA 

Received 21 January 1988 

Abstract. By requiring a Hamiltonian system with several adjustable parameters to have 
a certain stability property, a family is created which includes as its members the integrable 
cases. The results, obtained analytically, for two Hamiltonian systems with two degrees 
of freedom, are presented. 

In this letter, I will present some analytic results using a new concept of stability which 
groups a given multiparameter Hamiltonian system possessing the same property into 
a ‘family’ that includes the integrable cases as its members. 

The problem of integrability, local and global stability and instability, of a dynamical 
system has been the subject of intense study for many years [I] .  For a Hamiltonian 
system with N degrees of freedom, integrability means the existence of N independent 
analytic global integrals of the motion. There have been several ingenious discoveries 
of integrable Hamiltonian systems through applications of inverse scattering transforms 
[2]. Of great importance and interest also is the suggestion that dynamical systems 
with the so-called PainlevC property are integrable [3-91. 

Recently, there have been some remarkable results which came out from studies 
of the local stability or instability of a class of straight line periodic motions. On the 
one hand, Ziglin [ 101, Yoshida [ 111, Ito [ 121 and Yoshida et a1 [ 131 considered the 
monodromy properties around these particular solutions of a system and were able to 
prove some conditions for the non-integrability of a system, in the sense that no analytic 
integral of motion exists other than the Hamiltonian itself. On the other hand, Hioe 
and Deng [ 141 found a universal exponent by which the Lyapunov exponent approaches 
zero at the many or infinitely many stability-instability transition points for Hamiltonian 
systems of any dimensions. Furthermore, I have found the following result [ 151 which 
forms the basis of this letter. By requiring that any small perturbations to these straight 
line periodic solutions not only remain bounded, but also be periodic functions of the 
time not only for a specific initial value (a point) but for one or more specific lines of 
initial values, a family of systems has been found which includes the integrable cases 
as its members. Of even greater interest than the integrable cases themselves is what 
one can learn from other members (integrable or non-integrable) of the family. 

In particular, I have applied this idea of requiring the system to have what I have 
called ‘stability of type 1’ property with respect to a line or lines of initial values for 
the special straight line periodic solutions, to the two following Hamiltonian systems 
with two degrees of freedom, the Hamiltonians of which are given by 

H = ~ ( X 2 + j 2 ) + f ( A x 2 + B y 2 ) + D x 4 + C x 2 y 2 + E y 4  (1) 
and 

H = i ( X 2  + 3’) + ;( Ax2 + By’) + Cx2y - iDy3 
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where (1) may be referred to as the generalised coupled quartic oscillator system [16] 
and ( 2 )  the generalised Hinon-Heiles system [17], and where the parameters 
A, B, . . . , E may assume any real values. The straight line periodic solutions exist in 
both cases and they are expressible in terms of the Jacobi elliptic functions for a line 
or lines of initial values which are typically of the form 

(X(O), Y ( O ) ,  4 0 ) ,  Y(0)) = (xo, 0,090) or (0, Y o ,  090) ( 3 )  

where xo and yo  can assume any real values along the x and y axes respectively as 
long as the motions remain bounded. The behaviour of any small deviations Ax and 
Ay from the specified lines of initial values is govesned by equations of the form 

d2(AU)/dT2 = { P k 2  sn'(7, k )  - Q)(hu)  (4) 

where A u  stands for Ax or Ay, T is some rescaled time, P and Q depend on the 
parameters A, B, . . . , E appearing in the Hamiltonians, and k is the modulus of the 
elliptic function sn T and also depends on A, B, . . . , E as well as on the initial value 
xo or y o .  Equation (4) is of the form of the Lami equation [18]. The requirement that 
the system has stability of type 1 with respect to a line of initial values implies that 
the solution for A u  must be a periodic Lam6 function for any initial values on the 
specified line. This requirement places conditions on P and Q and thus on the 
parameters A, B, . . . , E, and I have been able to obtain these conditions analytically. 
Cases which satisfy this requirement are presented in tables 1 and 2 for the generalised 
coupled quartic oscillator system ( l ) ,  and for the generalised Hinon-Heiles system 
( 2 ) ,  respectively. The stability of the type-1 requirement for (1) is demanded with 
respect to two h i e s  of initial values (xo, 0, 0,O) and (0, yo ,  0,O) and for ( 2 )  with respect 
to one line of initial values (O,y, ,O,O);  the number of lines being the same as the 
number of periodic straight line solutions which exist for the two Hamiltonian systems. 

Table 1.  Cases of the generalised coupled quartic oscillator system ( l ) ,  which have stability 
of type 1 and which are also integrable. 

Case A : B  D : C : E  

I 1 : l  1 : l : l  
11 1 : l  1 :3 :1  
111 1 : 4  1:6:16 
I V  4 :  1 16:6: 1 

Table 2. Eight cases of the generalised Henon-Heiles system (21, which have stability of 
type 1. Cases 1 and 6 are known to be integrable. 
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All the four cases in table 1, and cases 1 and 6 in table 2, turn out to be known 
integrable cases [3-8, 19, Greene (private communication reported in [4,5])]. The six 
other cases in table 2 are not known to be integrable or non-integrable. They clearly 
share an important characteristic with the known integrable cases, but they do not 
pass the Painlevi test. One of the six cases, case 5 ,  was shown by It0 [12] to satisfy 
his condition for the system to have an entire integral which is functionally independent 
of the Hamiltonian, but he was not able to prove integrability or non-integrability. 
The precise status of these six cases, if it can be decided, is of great interest and has 
important implications. 

I should point out that my stability of type-1 analysis missed out two integrable 
cases for reasons which I shall explain. One case is for the generalised coupled quartic 
oscillator system (1) when A = B = 0, D :  C :  E = 1 :3:8, and the other is for the generalised 
HCnon-Heiles system (2)  when A / B  = any number, C /  D = -i. The integrability of 
these two cases was shown in [6] and Greene (private communication). For these two 
cases, the motions of the systems turn out to be unstable in the neighbourhood of the 
very lines of initial values which I have used for my analysis. This instability can 
occur even though the systems are integrable because the gradients of the first and 
second integrals become, for these cases, linearly dependent on the straight lines, and 
they are therefore beyond the reach of Poincari’s theorem [20,21] on the non-existence 
of an exponentially unstable solution in an integrable Hamiltonian system with two 
degrees of freedom. Thus these two rather exceptional cases have been missed out in 
my analysis. It shows that the stability of type-1 analysis may not lead to all possible 
integrable cases, and I do not claim that it would. Nevertheless, aside from getting 
most of the integrable cases, the family of cases that it has created is interesting in its 
own right, from which, I believe, we can learn much. 

Besides applying it analytically, the concept is open to an even wider application 
in numerical experiments to all kinds of Hamiltonian systems for which the equations 
corresponding to (4) for the systems may be much more complex. Since most systems 
are non-integrable and integrable systems are exceptions, I hope that this approach 
will help to find most of the possible integrable cases of practical interest. More 
importantly, I hope that a better understanding and application will be found in the 
family of systems which have such an easily identifiable and appealing property as 
that of the stability of type 1. 

Hamiltonian systems are also known to give rise to chaotic motions. For the coupled 
quartic oscillator system, the chaos-order-chaos transitions as the coupling parameter 
is varied was clearly demonstrated by the numerical studies of Deng and Hioe [22]. 
Stability of type-1 analysis showed that an integrable case, or any member of the family 
having the stability of type-1 property, is typically the ‘boundary’ that separates cases 
in which the behaviour of small deviations from a given initial value is quasiperiodic 
and cases in which small deviations grow exponentially. 

In summary, I have introduced a useful property which I have called stability of 
type 1. The concept is somewhat misleadingly simple, and yet proves to be quite 
powerful. It can be used to find integrable systems and, more importantly perhaps, 
to characterise systems and motions which are more general than being simply 
integrable. It would be worthwhile to see whether the same success can be achieved 
for non-Hamiltonian and driven systems. 

I greatly appreciate many helpful discussions with Dr C E Carroll and Dr Z Deng. 
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